
Desktop Notifications Specification

1. Introduction

This is a draft standard for a desktop notifications service, through which applications can generate
passive popups (sometimes known as "poptarts") to notify the user in an asynchronous manner of events.

This specification explicitly does not include other types of notification presentation such as modal
message boxes, window manager decorations or window list annotations.

Example use cases include:

• Presence changes in IM programs: for instance, MSN Messenger on Windows pioneered the use of
passive popups to indicate presence changes.

• Scheduled alarm

• Completed file transfer

• New mail notification

• Low disk space/battery warnings

2. Basic Design

In order to ensure that multiple notifications can easily be displayed at once, and to provide a convenient
implementation, all notifications are controlled by a single session-scoped service which exposes a
D-BUS interface.

On startup, a conforming implementation should take the org.freedesktop.Notifications service
on the session bus. This service will be referred to as the "notification server" or just "the server" in this
document. It can optionally be activated automatically by the bus process, however this is not required
and notification server clients must not assume that it is available.

The server should implement the org.freedesktop.Notifications interface on an object with the
path "/org/freedesktop/Notifications". This is the only interface required by this version of the
specification.

A notification has the following components:

Table 1. Notification Components

Component Description

1

Desktop Notifications Specification

Component Description
Application Name This is the optional name of the application

sending the notification. This should be the
application’s formal name, rather than some sort of
ID. An example would be "FredApp E-Mail
Client," rather than "fredapp-email-client."

Replaces ID An optional ID of an existing notification that this
notification is intended to replace.

Notification Icon The notification icon. This is represented either as
a URI (file:// is the only URI schema supported
right now) or a name in a
freedesktop.org-compliant icon theme (not a
GTK+ stock ID).

Summary This is a single line overview of the notification.
For instance, "You have mail" or "A friend has
come online". It should generally not be longer
than 40 characters, though this is not a
requirement, and server implementations should
word wrap if necessary. The summary must be
encoded using UTF-8.

Body This is a multi-line body of text. Each line is a
paragraph, server implementations are free to
word wrap them as they see fit.
The body may contain simple markup as specified
in Markup. It must be encoded using UTF-8.

If the body is omitted, just the summary is
displayed.

2

Desktop Notifications Specification

Component Description
Actions The actions send a request message back to the

notification client when invoked. This
functionality may not be implemented by the
notification server, conforming clients should
check if it is available before using it (see the
GetCapabilities message in Protocol). An
implementation is free to ignore any requested by
the client. As an example one possible rendering
of actions would be as buttons in the notification
popup.
Actions are sent over as a list of pairs. Each even
element in the list (starting at index 0) represents
the identifier for the action. Each odd element in
the list is the localized string that will be
displayed to the user.

The default action (usually invoked my clicking
the notification) should have a key named
"default". The name can be anything, though
implementations are free not to display it.

3

Desktop Notifications Specification

Component Description
Hints See Hints.

Beyond the core protocol is the hints table. A
couple of core elements have been moved to hints
mostly because in a huge number of cases their
default values would be sufficent. The elements
moved to hints are:

Elements Moved to Hints

Element: Category ID

Description: An optional ID representing the
type of notification (the name has been changed
from Notification Type ID in pervious versions).
See Categories.

Element: Urgency Level

Description: The urgency of the notification.
See Urgency Levels. (Defaults to 1 - Normal)

Element: Icon Data

Description: Instead of overloading the icon
field we now have an icon_data field that is used
when icon is blank.

Expiration Timeout The timeout time in milliseconds since the
display of the notification at which the
notification should automatically close.
If -1, the notification’s expiration time is
dependent on the notification server’s settings,
and may vary for the type of notification.

If 0, the notification never expires.

Each notification displayed is allocated a unique ID by the server. This is unique within the session.
While the notification server is running, the ID will not be recycled unless the capacity of a uint32 is
exceeded.

This can be used to hide the notification before the expiration timeout is reached. It can also be used to

4

Desktop Notifications Specification

atomically replace the notification with another. This allows you to (for instance) modify the contents of
a notification while it’s on-screen.

3. Backwards Compatibility

Clients should try and avoid making assumptions about the presentation and abilities of the notification
server. The message content is the most important thing.

Clients can check with the server what capabilities are supported using the GetCapabilities message.
See Protocol.

If a client requires a response from a passive popup, it should be coded such that a non-focus-stealing
message box can be used in the case that the notification server does not support this feature.

4. Markup

Body text may contain markup. The markup is XML-based, and consists of a small subset of HTML
along with a few additional tags.

The following tags should be supported by the notification server. Though it is optional, it is
recommended. Notification servers that do not support these tags should filter them out.

 ... Bold

<i> ... </i> Italic

<u> ... </u> Underline

 ... Hyperlink

 Image

A full-blown HTML implementation is not required of this spec, and notifications should never take
advantage of tags that are not listed above. As notifications are not a substitute for web browsers or
complex dialogs, advanced layout is not necessary, and may in fact limit the number of systems that
notification services can run on, due to memory usage and screen space. Such examples are PDAs,
certain cell phones, and slow PCs or laptops with little memory.

For the same reason, a full XML or XHTML implementation using XSLT or CSS stylesheets is not part
of this specification. Information that must be presented in a more complex form should use an
application-specific dialog, a web browser, or some other display mechanism.

The tags specified above mark up the content in a way that allows them to be stripped out on some

5

Desktop Notifications Specification

implementations without impacting the actual content.

4.1. Hyperlinks

Hyperlinks allow for linking one or more words to a URI. There is no requirement to allow for images to
be linked, and it is highly suggested that implementations do not allow this, as there is no clean-looking,
standard visual indicator for a hyperlinked image.

Hyperlinked text should appear in the standard blue underline format.

Hyperlinks cannot function as a replacement for actions. They are used to link to local directories or
remote sites using standard URI schemes.

Implementations are not required to support hyperlinks.

4.2. Images

Images may be placed in the notification, but this should be done with caution. The image should never
exceed 200x100, but this should be thought of as a maximum size. Images should always have
alternative text provided through the alt="..." attribute.

Image data cannot be embedded in the message itself. Images referenced must always be local files.

Implementations are not required to support images.

5. Icons

A notification can optionally have an icon specified by the Notification Icon field or by the icon_data hint.

The icon_data field should be a raw image data structure of signature (iiibiiay) which describes the
width, height, rowstride, has alpha, bits per sample, channels and image data respectively.

6. Categories

Notifications can optionally have a type indicator. Although neither client or nor server must support this,
some may choose to. Those servers implementing categories may use them to intelligently display the

6

Desktop Notifications Specification

notification in a certain way, or group notifications of similar types.

Categories are in class.specific form. class specifies the generic type of notification, and specific

specifies the more specific type of notification.

If a specific type of notification does not exist for your notification, but the generic kind does, a
notification of type class is acceptable.

Third parties, when defining their own categories, should discuss the possibility of standardizing on the
hint with other parties, preferably in a place such as the xdg (http://freedesktop.org/mailman/listinfo/xdg)
mailing list at freedesktop.org (http://freedesktop.org/). If it warrants a standard, it will be added to the
table above. If no consensus is reached, the category should be in the form of "x-vendor.class.name."

The following table lists standard notifications as defined by this spec. More will be added in time.

Table 2. Categories

Type Description
"device" A generic device-related notification that doesn’t

fit into any other category.

"device.added" A device, such as a USB device, was added to the
system.

"device.error" A device had some kind of error.

"device.removed" A device, such as a USB device, was removed
from the system.

"email" A generic e-mail-related notification that doesn’t
fit into any other category.

"email.arrived" A new e-mail notification.

"email.bounced" A notification stating that an e-mail has bounced.

"im" A generic instant message-related notification that
doesn’t fit into any other category.

"im.error" An instant message error notification.

"im.received" A received instant message notification.

"network" A generic network notification that doesn’t fit into
any other category.

"network.connected" A network connection notification, such as
successful sign-on to a network service. This
should not be confused with device.added for
new network devices.

"network.disconnected" A network disconnected notification. This should
not be confused with device.removed for
disconnected network devices.

"network.error" A network-related or connection-related error.

7

Desktop Notifications Specification

Type Description
"presence" A generic presence change notification that

doesn’t fit into any other category, such as going
away or idle.

"presence.offline" An offline presence change notification.

"presence.online" An online presence change notification.

"transfer" A generic file transfer or download notification
that doesn’t fit into any other category.

"transfer.complete" A file transfer or download complete notification.

"transfer.error" A file transfer or download error.

7. Urgency Levels

Notifications have an urgency level associated with them. This defines the importance of the notification.
For example, "Joe Bob signed on" would be a low urgency. "You have new mail" or "A USB device was
unplugged" would be a normal urgency. "Your computer is on fire" would be a critical urgency.

Urgency levels are defined as follows:

Table 3. Urgency Levels

Type Description
0 Low

1 Normal

2 Critical

Developers must use their own judgement when deciding the urgency of a notification. Typically, if the
majority of programs are using the same level for a specific type of urgency, other applications should
follow them.

For low and normal urgencies, server implementations may display the notifications how they choose.
They should, however, have a sane expiration timeout dependent on the urgency level.

Critical notifications should not automatically expire, as they are things that the user will most likely
want to know about. They should only be closed when the user dismisses them, for example, by clicking
on the notification.

8

Desktop Notifications Specification

8. Hints

Hints are a way to provide extra data to a notification server that the server may be able to make use of.

Neither clients nor notification servers are required to support any hints. Both sides should assume that
hints are not passed, and should ignore any hints they do not understand.

Third parties, when defining their own hints, should discuss the possibility of standardizing on the hint
with other parties, preferably in a place such as the xdg (http://freedesktop.org/mailman/listinfo/xdg)
mailing list at freedesktop.org (http://freedesktop.org/). If it warrants a standard, it will be added to the
table above. If no consensus is reached, the hint name should be in the form of "x-vendor-name."

The value type for the hint dictionary in D-BUS is of the DBUS_TYPE_VARIANT container type. This
allows different data types (string, integer, boolean, etc.) to be used for hints. When adding a dictionary
of hints, this type must be used, rather than putting the actual hint value in as the dictionary value.

The following table lists the standard hints as defined by this specification. Future hints may be proposed
and added to this list over time. Once again, implementations are not required to support these.

Table 4. Standard Hints

Name Value Type Description
"urgency" byte The urgency level.

"category" string The type of notification this is.

"desktop-entry"> string This specifies the name of the
desktop filename representing
the calling program. This should
be the same as the prefix used for
the application’s .desktop file. An
example would be "rhythmbox"
from "rhythmbox.desktop". This
can be used by the daemon to
retrieve the correct icon for the
application, for logging
purposes, etc.

"image_data" (iiibiiay) This is a raw data image format
which describes the width,
height, rowstride, has alpha, bits
per sample, channels and image
data respectively. We use this
value if the icon field is left
blank.

"sound-file" string The path to a sound file to play
when the notification pops up.

9

Desktop Notifications Specification

Name Value Type Description
"suppress-sound" boolean Causes the server to suppress

playing any sounds, if it has that
ability. This is usually set when
the client itself is going to play
its own sound.

"x" int Specifies the X location on the
screen that the notification
should point to. The "y" hint
must also be specified.

"y" int Specifies the Y location on the
screen that the notification
should point to. The "x" hint
must also be specified.

9. D-BUS Protocol

The following messages must be supported by all implementations.

9.1. Message commands

9.1.1. org.freedesktop.Notifications.GetCapabilities

STRING_ARRAY org.freedesktop.Notifications.GetCapabilities (void);

This message takes no parameters.

It returns an array of strings. Each string describes an optional capability implemented by the server. The
following values are defined by this spec:

Table 5. Server Capabilities

"actions" The server will provide the specified actions to the
user. Even if this cap is missing, actions may still
be specified by the client, however the server is
free to ignore them.

"body" Supports body text. Some implementations may
only show the summary (for instance, onscreen
displays, marquee/scrollers)

10

Desktop Notifications Specification

"body-hyperlinks" The server supports hyperlinks in the
notifications.

"body-images" The server supports images in the notifications.

"body-markup" Supports markup in the body text. If marked up
text is sent to a server that does not give this cap,
the markup will show through as regular text so
must be stripped clientside.

"icon-multi" The server will render an animation of all the
frames in a given image array. The client may still
specify multiple frames even if this cap and/or
"icon-static" is missing, however the server is
free to ignore them and use only the primary
frame.

"icon-static" Supports display of exactly 1 frame of any given
image array. This value is mutually exclusive with
"icon-multi", it is a protocol error for the
server to specify both.

"sound" The server supports sounds on notifications. If
returned, the server must support the
"sound-file" and "suppress-sound" hints.

New vendor-specific caps may be specified as long as they start with "x-vendor". For instance,
"x-gnome-foo-cap". Capability names must not contain spaces. They are limited to alpha-numeric
characters and dashes ("-").

9.1.2. org.freedesktop.Notifications.Notify

UINT32 org.freedesktop.Notifications.Notify (STRING app_name, UINT32
replaces_id, STRING app_icon, STRING summary, STRING body, ARRAY actions,
DICT hints, INT32 expire_timeout);

Sends a notification to the notification server.

Table 6. Notify Parameters

Name Type Description
app_name STRING The optional name of the

application sending the
notification. Can be blank.

11

Desktop Notifications Specification

Name Type Description
replaces_id UINT32 The optional notification ID that

this notification replaces. The
server must atomically (ie with
no flicker or other visual cues)
replace the given notification
with this one. This allows clients
to effectively modify the
notification while it’s active. A
value of value of 0 means that
this notification won’t replace
any existing notifications.

app_icon STRING The optional program icon of
the calling application. See
Icons. Can be an empty string,
indicating no icon.

summary STRING The summary text briefly
describing the notification.

body STRING The optional detailed body text.
Can be empty.

actions ARRAY Actions are sent over as a list of
pairs. Each even element in the
list (starting at index 0)
represents the identifier for the
action. Each odd element in the
list is the localized string that
will be displayed to the user.

hints DICT Optional hints that can be passed
to the server from the client
program. Although clients and
servers should never assume each
other supports any specific hints,
they can be used to pass along
information, such as the process
PID or window ID, that the
server may be able to make use
of. See Hints. Can be empty.

12

Desktop Notifications Specification

Name Type Description
expire_timeout INT32 The timeout time in

milliseconds since the display
of the notification at which the
notification should
automatically close.
If -1, the notification’s
expiration time is dependent on
the notification server’s settings,
and may vary for the type of
notification. If 0, never expire.

If replaces_id is 0, the return value is a UINT32 that represent the notification. It is unique, and will
not be reused unless a MAXINT number of notifications have been generated. An acceptable
implementation may just use an incrementing counter for the ID. The returned ID is always greater than
zero. Servers must make sure not to return zero as an ID.

If replaces_id is not 0, the returned value is the same value as replaces_id.

9.1.3. org.freedesktop.Notifications.CloseNotification

void org.freedesktop.Notifications.CloseNotification (UINT32 id);

Causes a notification to be forcefully closed and removed from the user’s view. It can be used, for
example, in the event that what the notification pertains to is no longer relevant, or to cancel a
notification with no expiration time.

The NotificationClosed signal is emitted by this method.

If the notification no longer exists, an empty D-BUS Error message is sent back.

9.1.4. org.freedesktop.Notifications.GetServerInformation

void org.freedesktop.Notifications.GetServerInformation (out STRING name, out
STRING vendor, out STRING version);

This message returns the information on the server. Specifically, the server name, vendor, and version
number.

13

Desktop Notifications Specification

Table 7. GetServerInformation Return Values

Name Type Description
name STRING The product name of the server.

vendor STRING The vendor name. For example,
"KDE," "GNOME,"
"freedesktop.org," or
"Microsoft."

version STRING The server’s version number.

9.2. Signals

9.2.1. org.freedesktop.Notifications.NotificationClosed

org.freedesktop.Notifications.NotificationClosed (UINT32 id, UINT32 reason);

A completed notification is one that has timed out, or has been dismissed by the user.

Table 8. NotificationClosed Parameters

Name Type Description
id UINT32 The ID of the notification that

was closed.

reason UINT32 The reason the notification was
closed.
1 - The notification expired.

2 - The notification was
dismissed by the user.

3 - The notification was closed
by a call to
CloseNotification.

4 - Undefined/reserved reasons.

The ID specified in the signal is invalidated before the signal is sent and may not be used in any further
communications with the server.

14

Desktop Notifications Specification

9.2.2. org.freedesktop.Notifications.ActionInvoked

org.freedesktop.Notifications.ActionInvoked (UINT32 id, STRING action_key);

This signal is emitted when one of the following occurs:

• The user performs some global "invoking" action upon a notification. For instance, clicking
somewhere on the notification itself.

• The user invokes a specific action as specified in the original Notify request. For example, clicking on
an action button.

Table 9. ActionInvoked Parameters

Name Type Description
id UINT32 The ID of the notification

emitting the ActionInvoked
signal.

action_key STRING The key of the action invoked.
These match the keys sent over
in the list of actions.

Note: Clients should not assume the server will generate this signal. Some servers may not support
user interaction at all, or may not support the concept of being able to "invoke" a notification.

15

